No-regret learning and a mechanism for distributed multiagent planning

نویسندگان

  • Jan-P. Calliess
  • Geoffrey J. Gordon
چکیده

We develop a novel mechanism for coordinated, distributed multiagent planning. We consider problems stated as a collection of single-agent planning problems coupled by common soft constraints on resource consumption. (Resources may be real or fictitious, the latter introduced as a tool for factoring the problem). A key idea is to recast the distributed planning problem as learning in a repeated game between the original agents and a newly introduced group of adversarial agents who influence prices for the resources. The adversarial agents benefit from arbitrage: that is, their incentive is to uncover violations of the resource usage constraints and, by selfishly adjusting prices, encourage the original agents to avoid plans that cause such violations. If all agents employ no-external-regret learning algorithms in the course of this repeated interaction, we are able to show that our mechanism can achieve design goals such as social optimality (efficiency), budget balance, and Nash-equilibrium convergence to within an error which approaches zero as the agents gain experience. In particular, the agents’ average plans converge to a socially optimal solution for the original planning task. We present experiments in a simulated network routing domain demonstrating our method’s ability to reliably generate sound plans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and No-Regret in Multiagent Learning

Learning in a multiagent system is a challenging problem due to two key factors. First, if other agents are simultaneously learning then the environment is no longer stationary, thus undermining convergence guarantees. Second, learning is often susceptible to deception, where the other agents may be able to exploit a learner’s particular dynamics. In the worst case, this could result in poorer ...

متن کامل

A Distributed Planning Approach Using Multiagent Goal Transformations

A multiagent goal transformation is defined as a directed alteration of goals by the agents in a multiagent system in order to adjust for lack of resources and/or lack of capabilities. Multiagent goal transformation can be used as a uniform coordination mechanism. We describe preliminary research that implements a distributed planning approach incorporating several co-operative planning agents ...

متن کامل

Empirically Evaluating Multiagent Reinforcement Learning Algorithms

This article makes two contributions. First, we present a platform for running and analyzing multiagent reinforcement learning experiments. Second, to demonstrate this platform we undertook and evaluated an empirical test of multiagent reinforcement learning algorithms from the literature, which to our knowledge is the largest such test ever conducted. We summarize some conclusions from our exp...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Unifying Convergence and No-Regret in Multiagent Learning

We present a new multiagent learning algorithm, RVσ(t), that builds on an earlier version, ReDVaLeR . ReDVaLeR could guarantee (a) convergence to best response against stationary opponents and either (b) constant bounded regret against arbitrary opponents, or (c) convergence to Nash equilibrium policies in self-play. But it makes two strong assumptions: (1) that it can distinguish between self-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008